skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "BarrÃ-a Pineda, Jordan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing utilization of massive open online courses has significantly expanded global access to formal education. Despite the technology’s promising future, student interaction on MOOCs is still a relatively under-explored and poorly understood topic. This work proposes a multi-level pattern discovery through hierarchical discriminative tensor factorization. We formulate the problem as a hierarchical discriminant subspace learning problem, where the goal is to discover the shared and discriminative patterns with a hierarchical structure. The discovered patterns enable a more effective exploration of the contrasting behaviors of two performance groups. We conduct extensive experiments on several real-world MOOC datasets to demonstrate the effectiveness of our proposed approach. Our study advances the current predictive modeling in MOOCs by providing more interpretable behavioral patterns and linking their relationships with the performance outcome. 
    more » « less